Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2220120120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802427

RESUMO

The activation of thymic B cells is critical for their licensing as antigen presenting cells and resulting ability to mediate T cell central tolerance. The processes leading to licensing are still not fully understood. By comparing thymic B cells to activated Peyer's patch B cells at steady state, we found that thymic B cell activation starts during the neonatal period and is characterized by TCR/CD40-dependent activation, followed by immunoglobulin class switch recombination (CSR) without forming germinal centers. Transcriptional analysis also demonstrated a strong interferon signature, which was not apparent in the periphery. Thymic B cell activation and CSR were primarily dependent on type III IFN signaling, and loss of type III IFN receptor in thymic B cells resulted in reduced thymocyte regulatory T cell (Treg) development. Finally, from TCR deep sequencing, we estimate that licensed B cells induce development of a substantial fraction of the Treg cell repertoire. Together, these findings reveal the importance of steady-state type III IFN in generating licensed thymic B cells that induce T cell tolerance to activated B cells.


Assuntos
Interferon lambda , Linfócitos T Reguladores , Humanos , Recém-Nascido , Timo , Timócitos , Receptores de Antígenos de Linfócitos T
2.
Proc Natl Acad Sci U S A ; 119(37): e2201645119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36070344

RESUMO

Neuroimmune interactions are crucial for regulating immunity and inflammation. Recent studies have revealed that the central nervous system (CNS) senses peripheral inflammation and responds by releasing molecules that limit immune cell activation, thereby promoting tolerance and tissue integrity. However, the extent to which this is a bidirectional process, and whether peripheral immune cells also promote tolerance mechanisms in the CNS remains poorly defined. Here we report that helminth-induced type 2 inflammation promotes monocyte responses in the brain that are required to inhibit excessive microglial activation and host death. Mechanistically, infection-induced monocytes express YM1 that is sufficient to inhibit tumor necrosis factor production from activated microglia. Importantly, neuroprotective monocytes persist in the brain, and infected mice are protected from subsequent lipopolysaccharide-induced neuroinflammation months after infection-induced inflammation has resolved. These studies demonstrate that infiltrating monocytes promote CNS homeostasis in response to inflammation in the periphery and demonstrate that a peripheral infection can alter the immunologic landscape of the host brain.


Assuntos
Encéfalo , Encefalite , Homeostase , Monócitos , Neuroimunomodulação , Trichinella spiralis , Triquinelose , Animais , Encéfalo/imunologia , Encéfalo/parasitologia , Encefalite/imunologia , Encefalite/parasitologia , Homeostase/imunologia , Lectinas/metabolismo , Camundongos , Microglia/imunologia , Monócitos/imunologia , Trichinella spiralis/imunologia , Triquinelose/imunologia , Triquinelose/patologia , beta-N-Acetil-Hexosaminidases/metabolismo
3.
J Immunol ; 208(12): 2806-2816, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35675958

RESUMO

Infants with attenuated type III IFN (IFN-λ) responses are at increased risk of severe lower respiratory tract infection (sLRI). The IL-28Rα-chain and IL-10Rß-chain form a heterodimeric receptor complex, necessary for IFN-λ signaling. Therefore, to better understand the immunopathogenic mechanisms through which an IFN-λlo microenvironment predisposes to a sLRI, we inoculated neonatal wild-type and IL-28R-deficient (IL-28R -/-) mice with pneumonia virus of mice, a rodent-specific pneumovirus. Infected IL-28R -/- neonates displayed an early, pronounced, and persistent neutrophilia that was associated with enhanced reactive oxygen species (ROS) production, NETosis, and mucus hypersecretion. Targeted deletion of the IL-28R in neutrophils was sufficient to increase neutrophil activation, ROS production, NET formation, and mucus production in the airways. Inhibition of protein-arginine deiminase type 4 (PAD4), a regulator of NETosis, had no effect on myeloperoxidase expression, citrullinated histones, and the magnitude of the inflammatory response in the lungs of infected IL-28R -/- mice. In contrast, inhibition of ROS production decreased NET formation, cellular inflammation, and mucus hypersecretion. These data suggest that IFN-λ signaling in neutrophils dampens ROS-induced NETosis, limiting the magnitude of the inflammatory response and mucus production. Therapeutics that promote IFN-λ signaling may confer protection against sLRI.


Assuntos
Bronquiolite Viral , Armadilhas Extracelulares , Interferons/metabolismo , Animais , Animais Recém-Nascidos , Bronquiolite Viral/metabolismo , Bronquiolite Viral/patologia , Armadilhas Extracelulares/metabolismo , Humanos , Camundongos , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Espécies Reativas de Oxigênio/metabolismo
4.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958350

RESUMO

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Viroses/etiologia , Viroses/transmissão , Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Animais , Biomarcadores , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Interações Microbianas , Roedores , Viroses/metabolismo
5.
Blood ; 138(8): 722-737, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436524

RESUMO

Immunopathology and intestinal stem cell (ISC) loss in the gastrointestinal (GI) tract is the prima facie manifestation of graft-versus-host disease (GVHD) and is responsible for significant mortality after allogeneic bone marrow transplantation (BMT). Approaches to prevent GVHD to date focus on immune suppression. Here, we identify interferon-λ (IFN-λ; interleukin-28 [IL-28]/IL-29) as a key protector of GI GVHD immunopathology, notably within the ISC compartment. Ifnlr1-/- mice displayed exaggerated GI GVHD and mortality independent of Paneth cells and alterations to the microbiome. Ifnlr1-/- intestinal organoid growth was significantly impaired, and targeted Ifnlr1 deficiency exhibited effects intrinsic to recipient Lgr5+ ISCs and natural killer cells. PEGylated recombinant IL-29 (PEG-rIL-29) treatment of naive mice enhanced Lgr5+ ISC numbers and organoid growth independent of both IL-22 and type I IFN and modulated proliferative and apoptosis gene sets in Lgr5+ ISCs. PEG-rIL-29 treatment improved survival, reduced GVHD severity, and enhanced epithelial proliferation and ISC-derived organoid growth after BMT. The preservation of ISC numbers in response to PEG-rIL-29 after BMT occurred both in the presence and absence of IFN-λ-signaling in recipient natural killer cells. IFN-λ is therefore an attractive and rapidly testable approach to prevent ISC loss and immunopathology during GVHD.


Assuntos
Transplante de Medula Óssea , Citocinas/farmacologia , Gastroenteropatias , Doença Enxerto-Hospedeiro , Interleucinas/farmacocinética , Transdução de Sinais , Animais , Citocinas/imunologia , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/genética , Gastroenteropatias/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Knockout , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transplante Homólogo
6.
J Immunol ; 207(2): 436-448, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34215655

RESUMO

Phosphatidylserine (PS)-targeting monoclonal Abs (mAbs) that directly target PS and target PS via ß2-gp1 (ß2GP1) have been in preclinical and clinical development for over 10 y for the treatment of infectious diseases and cancer. Although the intended targets of PS-binding mAbs have traditionally included pathogens as well as stressed tumor cells and its associated vasculature in oncology, the effects of PS-targeting mAbs on activated immune cells, notably T cells, which externalize PS upon Ag stimulation, is not well understood. Using human T cells from healthy donor PBMCs activated with an anti-CD3 + anti-CD28 Ab mixture (anti-CD3/CD28) as a model for TCR-mediated PS externalization and T cell stimulation, we investigated effects of two different PS-targeting mAbs, 11.31 and bavituximab (Bavi), on TCR activation and TCR-mediated cytokine production in an ex vivo paradigm. Although 11.31 and Bavi bind selectivity to anti-CD3/28 activated T cells in a PS-dependent manner, surprisingly, they display distinct functional activities in their effect on IFN-γ and TNF-ɑ production, whereby 11.31, but not Bavi, suppressed cytokine production. This inhibitory effect on anti-CD3/28 activated T cells was observed on both CD4+ and CD8+ cells and independently of monocytes, suggesting the effects of 11.31 were directly mediated by binding to externalized PS on activated T cells. Imaging showed 11.31 and Bavi bind at distinct focal depots on the cell membrane. Collectively, our findings indicate that PS-targeting mAb 11.31 suppresses cytokine production by anti-CD3/28 activated T cells.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Muromonab-CD3/imunologia , Fosfatidilserinas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Complexo CD3/imunologia , Linhagem Celular , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia
7.
Nat Commun ; 12(1): 2624, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976143

RESUMO

The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.


Assuntos
Colite Ulcerativa/imunologia , Interferons/metabolismo , Mucosa Intestinal/patologia , Reepitelização/imunologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos
8.
Nat Rev Rheumatol ; 17(6): 349-362, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33907323

RESUMO

Interferons are potent antiviral cytokines that modulate immunity in response to infection or other danger signals. In addition to their antiviral functions, type I interferons (IFNα and IFNß) are important in the pathogenesis of autoimmune diseases. Type III interferons (IFNλs) were initially described as a specialized system that inhibits viral replication at epithelial barrier surfaces while limiting inflammatory damage. However, evidence now suggests that type III interferons have complex effects on both innate and adaptive immune responses and might also be pathogenic in systemic autoimmune diseases. Concentrations of IFNλs are increased in blood and tissues in a number of autoimmune rheumatic diseases, including systemic lupus erythematosus, and are further associated with specific clinical and laboratory parameters. This Review is aimed at providing a critical evaluation of the current literature on IFNλ biology and how type III interferons might contribute to immune dysregulation and tissue damage in autoimmunity. The potential effects of type III interferons on treatment strategies for autoimmune rheumatic diseases, such as interferon blockade, are also considered.


Assuntos
Inflamação/imunologia , Interferons/imunologia , Doenças Reumáticas/imunologia , Animais , Antivirais/imunologia , Antivirais/farmacologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Ensaios Clínicos como Assunto , Citocinas , Humanos , Imunidade/imunologia , Imunidade Inata/imunologia , Inflamação/tratamento farmacológico , Interferon Tipo I/imunologia , Interferons/farmacologia , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Doenças Reumáticas/metabolismo , Doenças Reumáticas/patologia , Transdução de Sinais/imunologia , Interferon lambda
9.
Cancer Res ; 81(3): 698-712, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239426

RESUMO

Despite the promising clinical benefit of targeted and immune checkpoint blocking therapeutics, current strategies have limited success in breast cancer, indicating that additional inhibitory pathways are required to complement existing therapeutics. TAM receptors (Tyro-3, Axl, and Mertk) are often correlated with poor prognosis because of their capacities to sustain an immunosuppressive environment. Here, we ablate Axl on tumor cells using CRISPR/Cas9 gene editing, and by targeting Mertk in the tumor microenvironment (TME), we observed distinct functions of TAM as oncogenic kinases, as well as inhibitory immune receptors. Depletion of Axl suppressed cell intrinsic oncogenic properties, decreased tumor growth, reduced the incidence of lung metastasis and increased overall survival of mice when injected into mammary fat pad of syngeneic mice, and demonstrated synergy when combined with anti-PD-1 therapy. Blockade of Mertk function on macrophages decreased efferocytosis, altered the cytokine milieu, and resulted in suppressed macrophage gene expression patterns. Mertk-knockout mice or treatment with anti-Mertk-neutralizing mAb also altered the cellular immune profile, resulting in a more inflamed tumor environment with enhanced T-cell infiltration into tumors and T-cell-mediated cytotoxicity. The antitumor activity from Mertk inhibition was abrogated by depletion of cytotoxic CD8α T cells by using anti-CD8α mAb or by transplantation of tumor cells into B6.CB17-Prkdc SCID mice. Our data indicate that targeting Axl expressed on tumor cells and Mertk in the TME is predicted to have a combinatorial benefit to enhance current immunotherapies and that Axl and Mertk have distinct functional activities that impair host antitumor response. SIGNIFICANCE: This study demonstrates how TAM receptors act both as oncogenic tyrosine kinases and as receptors that mediate immune evasion in cancer progression.


Assuntos
Evasão da Resposta Imune/imunologia , Neoplasias Mamárias Experimentais/imunologia , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Transdução de Sinais/imunologia , c-Mer Tirosina Quinase/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Evasão da Resposta Imune/genética , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
10.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289152

RESUMO

With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-λ) realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-λ to prevent, limit, and treat these dangerous viral infections.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Interferons/metabolismo , Pneumonia Viral/metabolismo , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Internalização do Vírus
11.
Proc Natl Acad Sci U S A ; 117(10): 5409-5419, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094169

RESUMO

Type III IFN lambdas (IFN-λ) have recently been described as important mediators of immune responses at barrier surfaces. However, their role in autoimmune diseases such as systemic lupus erythematosus (SLE), a condition characterized by aberrant type I IFN signaling, has not been determined. Here, we identify a nonredundant role for IFN-λ in immune dysregulation and tissue inflammation in a model of TLR7-induced lupus. IFN-λ protein is increased in murine lupus and IFN-λ receptor (Ifnlr1) deficiency significantly reduces immune cell activation and associated organ damage in the skin and kidneys without effects on autoantibody production. Single-cell RNA sequencing in mouse spleen and human peripheral blood revealed that only mouse neutrophils and human B cells are directly responsive to this cytokine. Rather, IFN-λ activates keratinocytes and mesangial cells to produce chemokines that induce immune cell recruitment and promote tissue inflammation. These data provide insights into the immunobiology of SLE and identify type III IFNs as important factors for tissue-specific pathology in this disease.


Assuntos
Interferons/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Animais , Linfócitos B/imunologia , Linhagem Celular , Deleção de Genes , Humanos , Imiquimode/farmacologia , Inflamação/imunologia , Inflamação/patologia , Indutores de Interferon/farmacologia , Interferon Tipo I/fisiologia , Interferons/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/patologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/imunologia , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Interferon/genética , Transdução de Sinais , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/fisiologia , Interferon lambda
12.
Semin Immunol ; 43: 101303, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31771761

RESUMO

The unexpected discovery of a novel family of antiviral mediators, type III IFNs or IFN-λs, challenged the widely accepted primacy of type I IFNs in antiviral immunity, and it is now well recognized that the IFN-λ-based antiviral system plays a major role in antiviral protection of epithelial barriers. The recent characterization of previously unknown IFN-λ-mediated activities has prompted further reassessment of the role of type I IFNs in innate and adaptive immune and inflammatory responses. Since type I and type III IFNs are co-produced in response to a variety of stimuli, it is likely that many physiological processes are simultaneously and coordinately regulated by these cytokines in pathological conditions, and likely at steady state, as baseline expression of both IFN types is maintained by microbiota. In this review, we discuss emerging differences in the production and signaling of type I and type III IFNs, and summarize results of recent studies describing the involvement of type III IFNs in anti-bacterial and anti-fungal, as well as antiviral, defenses.


Assuntos
Infecções Bacterianas/imunologia , Interferon Tipo I/metabolismo , Interferons/metabolismo , Microbiota/imunologia , Micoses/imunologia , Viroses/imunologia , Animais , Humanos , Imunidade , Inflamação , Transdução de Sinais , Interferon lambda
13.
Mol Cancer Res ; 17(12): 2395-2409, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548239

RESUMO

Molecular events activating the PI3K pathway are frequently detected in human tumors and the activation of PI3K signaling alters numerous cellular processes including tumor cell proliferation, survival, and motility. More recent studies have highlighted the impact of PI3K signaling on the cellular response to interferons and other immunologic processes relevant to antitumor immunity. Given the ability of IFNγ to regulate antigen processing and presentation and the pivotal role of MHC class I (MHCI) and II (MHCII) expression in T-cell-mediated antitumor immunity, we sought to determine the impact of PI3K signaling on MHCI and MHCII induction by IFNγ. We found that the induction of cell surface MHCI and MHCII molecules by IFNγ is enhanced by the clinical grade PI3K inhibitors dactolisib and pictilisib. We also found that PI3K inhibition increases STAT1 protein levels following IFNγ treatment and increases accessibility at genomic STAT1-binding motifs. Conversely, we found that pharmacologic activation of PI3K signaling can repress the induction of MHCI and MHCII molecules by IFNγ, and likewise, the loss of PTEN attenuates the induction of MHCI, MHCII, and STAT1 by IFNγ. Consistent with these in vitro studies, we found that within human head and neck squamous cell carcinomas, intratumoral regions with high phospho-AKT IHC staining had reduced MHCI IHC staining. IMPLICATIONS: Collectively, these findings demonstrate that MHC expression can be modulated by PI3K signaling and suggest that activation of PI3K signaling may promote immune escape via effects on antigen presentation.


Assuntos
Interferon gama/farmacologia , Fosfatidilinositol 3-Quinase/genética , Fator de Transcrição STAT1/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Sítios de Ligação/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Genômica , Humanos , Interferon gama/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinase/imunologia , Ligação Proteica/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
14.
Cancer Res ; 79(10): 2669-2683, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877108

RESUMO

Tyro3, Axl, and Mertk (TAM) represent a family of homologous tyrosine kinase receptors known for their functional role in phosphatidylserine (PS)-dependent clearance of apoptotic cells and also for their immune modulatory functions in the resolution of inflammation. Previous studies in our laboratory have shown that Gas6/PS-mediated activation of TAM receptors on tumor cells leads to subsequent upregulation of PD-L1, defining a putative PS→TAM receptor→PD-L1 inhibitory signaling axis in the cancer microenvironment that may promote tolerance. In this study, we tested combinations of TAM inhibitors and PD-1 mAbs in a syngeneic orthotopic E0771 murine triple-negative breast cancer model, whereby tumor-bearing mice were treated with pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 alone or in combination. Tyro3, Axl, and Mertk were differentially expressed on multiple cell subtypes in the tumor microenvironment. Although monotherapeutic administration of either pan-TAM kinase inhibitor (BMS-777607) or anti-PD-1 mAb therapy showed partial antitumor activity, combined treatment of BMS-777607 with anti-PD-1 significantly decreased tumor growth and incidence of lung metastasis. Moreover, combined treatment with BMS-777607 and anti-PD-1 showed increased infiltration of immune stimulatory T cells versus either monotherapy treatment alone. RNA NanoString profiling showed enhanced infiltration of antitumor effector T cells and a skewed immunogenic immune profile. Proinflammatory cytokines increased with combinational treatment. Together, these studies indicate that pan-TAM inhibitor BMS-777607 cooperates with anti-PD-1 in a syngeneic mouse model for triple-negative breast cancer and highlights the clinical potential for this combined therapy. SIGNIFICANCE: These findings show that pan-inhibition of TAM receptors in combination with anti-PD-1 may have clinical value as cancer therapeutics to promote an inflammatory tumor microenvironment and improve host antitumor immunity.


Assuntos
Aminopiridinas/farmacologia , Anticorpos Monoclonais/imunologia , Receptor de Morte Celular Programada 1/imunologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridonas/farmacologia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias de Mama Triplo Negativas/imunologia , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Proc Natl Acad Sci U S A ; 116(6): 2103-2111, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655338

RESUMO

Cells of all mammals recognize double-stranded RNA (dsRNA) as a foreign material. In response, they release interferons (IFNs) and activate a ubiquitously expressed pseudokinase/endoribonuclease RNase L. RNase L executes regulated RNA decay and halts global translation. Here, we developed a biosensor for 2',5'-oligoadenylate (2-5A), the natural activator of RNase L. Using this biosensor, we found that 2-5A was acutely synthesized by cells in response to dsRNA sensing, which immediately triggered cellular RNA cleavage by RNase L and arrested host protein synthesis. However, translation-arrested cells still transcribed IFN-stimulated genes and secreted IFNs of types I and III (IFN-ß and IFN-λ). Our data suggest that IFNs escape from the action of RNase L on translation. We propose that the 2-5A/RNase L pathway serves to rapidly and accurately suppress basal protein synthesis, preserving privileged production of defense proteins of the innate immune system.


Assuntos
Técnicas Biossensoriais , Endorribonucleases/química , Interferon beta/química , Interferons/química , Biossíntese de Proteínas , Linhagem Celular , Endorribonucleases/metabolismo , Humanos , Interferon beta/metabolismo , Interferons/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
16.
J Immunol ; 201(7): 2082-2093, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111632

RESUMO

Crystal structure of the ternary complex of human IL-24 with two receptors, IL-22R1 and IL-20R2, has been determined at 2.15 Å resolution. A crystallizable complex was created by a novel approach involving fusing the ligand with a flexible linker to the presumed low-affinity receptor, and coexpression of this construct in Drosophila S2 cells together with the presumed high-affinity receptor. This approach, which may be generally applicable to other multiprotein complexes with low-affinity components, was necessitated by the instability of IL-24 expressed by itself in either bacteria or insect cells. Although IL-24 expressed in Escherichia coli was unstable and precipitated almost immediately upon its refolding and purification, a small fraction of IL-24 remaining in the folded state was shown to be active in a cell-based assay. In the crystal structure presented here, we found that two cysteine residues in IL-24 do not form a predicted disulfide bond. Lack of structural restraint by disulfides, present in other related cytokines, is most likely reason for the low stability of IL-24. Although the contact area between IL-24 and IL-22R1 is larger than between the cytokine and IL-20R2, calculations show the latter interaction to be slightly more stable, suggesting that the shared receptor (IL-20R2) might be the higher-affinity receptor.


Assuntos
Interleucinas/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Interleucina/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Citocinas , Drosophila , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Receptores de Interleucina/genética , Transdução de Sinais
18.
Front Immunol ; 8: 1521, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176978

RESUMO

The Tyro3, Axl, and Mertk (TAM) receptors are homologous type I receptor tyrosine kinases that have critical functions in the clearance of apoptotic cells in multicellular organisms. TAMs are activated by their endogenous ligands, growth arrest-specific 6 (Gas6), and protein S (Pros1), that function as bridging molecules between externalized phosphatidylserine (PS) on apoptotic cells and the TAM ectodomains. However, the molecular mechanisms by which Gas6/Pros1 promote TAM activation remains elusive. Using TAM/IFNγR1 reporter cell lines to monitor functional TAM activity, we found that Gas6 activity was exquisitely dependent on vitamin K-mediated γ-carboxylation, whereby replacing vitamin K with anticoagulant warfarin, or by substituting glutamic acid residues involved in PS binding, completely abrogated Gas6 activity as a TAM ligand. Furthermore, using domain and point mutagenesis, Gas6 activity also required both an intact Gla domain and intact EGF-like domains, suggesting these domains function cooperatively in order to achieve TAM activation. Despite the requirement of γ-carboxylation and the functional Gla domain, non-γ-carboxylated Gas6 and Gla deletion/EGF-like domain deletion mutants still retained their ability to bind TAMs and acted as blocking decoy ligands. Finally, we found that distinct sources of PS-positive cells/vesicles (including apoptotic cells, calcium-induced stressed cells, and exosomes) bound Gas6 and acted as cell-derived or exosome-derived ligands to activate TAMs. Taken together, our findings indicate that PS is indispensable for TAM activation by Gas6, and by inference, provides new perspectives on how PS, regulates TAM receptors and efferocytosis.

19.
Sci Immunol ; 2(16)2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986419

RESUMO

Type III interferons (IFN-λs) are the most recently found members of the IFN cytokine family and engage IFNLR1 and IL10R2 receptor subunits to activate innate responses against viruses. We have identified IFN-λs as critical instructors of antifungal neutrophil responses. Using Aspergillus fumigatus (Af) as a model to study antifungal immune responses, we found that depletion of CCR2+ monocytes compromised the ability of neutrophils to control invasive fungal growth. Using an unbiased approach, we identified type I and III IFNs as critical regulators of the interplay between monocytes and neutrophils responding to Af We found that CCR2+ monocytes are an important early source of type I IFNs that prime optimal expression of IFN-λ. Type III IFNs act directly on neutrophils to activate their antifungal response, and mice with neutrophil-specific deletion of IFNLR1 succumb to invasive aspergillosis. Dysfunctional neutrophil responses in CCR2-depleted mice were rescued by adoptive transfer of pulmonary CCR2+ monocytes or by exogenous administration of IFN-α and IFN-λ. Thus, CCR2+ monocytes promote optimal activation of antifungal neutrophils by initiating a coordinated IFN response. We have identified type III IFNs as critical regulators of neutrophil activation and type I IFNs as early stimulators of IFN-λ expression.


Assuntos
Imunidade Inata , Interferons/imunologia , Infecções Fúngicas Invasivas/imunologia , Imunidade Adaptativa , Animais , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Linhagem Celular , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon-alfa/administração & dosagem , Interferon-alfa/imunologia , Interferons/administração & dosagem , Interferons/genética , Interferons/metabolismo , Infecções Fúngicas Invasivas/microbiologia , Camundongos , Monócitos/imunologia , Neutrófilos/imunologia , Receptores CCR2/deficiência , Receptores CCR2/imunologia , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Interferon lambda
20.
mBio ; 8(4)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811340

RESUMO

Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/ß) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR-/-) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/ß receptor knockout (α/ßR-/-) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/ßR-/- λR-/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the role of type III interferon (IFN)-mediated signaling, a host immune defense mechanism, in controlling YFV-17D infection and attenuation in different mouse models. We uncovered a critical role of type III IFN-mediated signaling in preserving the integrity of the blood-brain barrier and preventing viral brain invasion. Type III IFN also played a major role in regulating the induction of a potent but balanced immune response that prevented viral evasion of the host immune system. An improved understanding of the complex mechanisms regulating YFV-17D attenuation will provide insights into the key virus-host interactions that regulate host immune responses and infection outcomes as well as open novel avenues for the development of innovative vaccine strategies.


Assuntos
Interferons/imunologia , Interferons/metabolismo , Transdução de Sinais/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Interferons/genética , Camundongos , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Vacinas Atenuadas/imunologia , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Vírus da Febre Amarela/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...